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Pattern avoidance and quasisymmetric
functions

Zachary Hamaker, Brendan Pawlowski & Bruce E. Sagan

Abstract Given a set of permutations Π, let Sn(Π) denote the set of permutations in the
symmetric group Sn that avoid every element of Π in the sense of pattern avoidance. Given
a subset S of {1, . . . , n − 1}, let FS be the fundamental quasisymmetric function indexed by
S. Our object of study is the generating function Qn(Π) =

∑
FDesσ where the sum is over

all σ ∈ Sn(Π) and Desσ is the descent set of σ. We characterize those Π ⊆ S3 such that
Qn(Π) is symmetric or Schur nonnegative for all n. In the process, we show how each of
the resulting Π can be obtained from a theorem or conjecture involving more general sets of
patterns. In particular, we prove results concerning symmetries, shuffles, and Knuth classes,
as well as pointing out a relationship with the arc permutations of Elizalde and Roichman.
Various conjectures and questions are mentioned throughout.

1. Introduction
Let Sn be the symmetric group of all permutations of [n] = {1, . . . , n}. We view the
permutations in Sn as sequences π = π1 . . . πn. Given any sequence σ of k distinct
integers, its standardization is the permutation stdσ ∈ Sk obtained by replacing
the smallest element of σ by 1, the next smallest by 2, and so forth. We say that
permutation σ contains permutation π as a pattern if there is a subsequence σ′ of (not
necessarily consecutive) elements of σ such that stdσ′ = π. For example, σ = 5132746
contains π = 231 because of the subsequence σ′ = 574. Permutation σ avoids π if it
does not contain π as a pattern. Given a set of permutations Π we let

Sn(Π) = {σ ∈ Sn | σ avoids every π ∈ Π}.
For more information about permutation patterns, see the book of Bóna [3]. Our
object is to make a connection between the theory of patterns and the theory of
quasisymmetric functions. First we will review some material concerning symmetric
functions. Details about symmetric functions and related combinatorics such as the
Robinson–Schensted map can be found in the texts of Macdonald [10], Sagan [13], or
Stanley [16].

Let x = {x1, x2, . . . } be a countably infinite set of commuting variables and con-
sider the algebra of formal power series over the rationals Q[[x]]. Consider a monomial
m = xn1

i1
. . . xnkik . The degree of m is

∑
i ni, and the degree of any f ∈ Q[[x]] is the

maximum degree of a monomial in f if the maximum exists or infinity otherwise. We
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say that f is symmetric if it is of bounded degree and invariant under permutation
of variables. For example

f = x2
1x2 + x1x

2
2 + x2

1x3 + x1x
2
3 + x2

2x3 + x2x
2
3 + . . .

is symmetric. Let Symn denote the vector space of symmetric functions homogeneous
of degree n. Bases for Symn are indexed by partitions of n, which are weakly decreasing
sequences of positive integers λ = (λ1, . . . , λk) with

∑
i λi = n. If λ is a partition of

n then we write λ ` n or |λ| = n. The λi are called the parts of λ.
We will be particularly interested in the important Schur basis for Symn. Recall

that a partition λ = (λ1, . . . , λk) has an associated Young diagram consisting of k left-
justified rows of boxes with λi boxes in row i. We will write our diagrams in English
notation with the first row on top and often make no distinction between a partition
and its diagram. Given λ ` n then a standard Young tableau (SYT), P , of shape λ
is obtained by filling the boxes bijectively with the elements of [n] so that rows and
columns increase. In a semistandard Young tableau (SSYT), T , of shape λ the entries
are positive integers distributed so that rows weakly increase and columns strictly
increase. We write SYT(λ) or SSYT(λ) for the set of standard or semistandard Young
tableaux of shape λ, respectively. We also write shP = λ or shT = λ to indicate that
P or T have shape λ. The Schur function corresponding to λ is

sλ =
∑
T

∏
i∈T

xi.

For example, the set SSYT(2, 1) consists of

(1) 1 1
2

, 1 2
2

, 1 1
3

, 1 3
3

, . . . , 1 2
3

, 1 3
2

, 1 2
4

, 1 4
2

, . . .

resulting in

s(2,1) = x2
1x2 + x1x

2
2 + x2

1x3 + x1x
2
3 + · · ·+ 2x1x2x3 + 2x1x2x4 + · · ·

as the corresponding Schur function. Call a function f ∈ Symn Schur nonnegative if
its expansion in the sλ basis has nonnegative coefficients.

Quasisymmetric functions refine symmetric functions. Call a formal power se-
ries g of bounded degree quasisymmetric if any two monomials xn1

i1
. . . xnkik where

i1 < · · · < ik and xn1
j1
. . . xnkjk where j1 < · · · < jk have the same coefficient in g. By

way of illustration,

g = x2
1x2 + x2

1x3 + x2
1x4 + · · ·+ x2

2x3 + x2
2x4 + · · ·+ x2

3x4 + . . .

is quasisymmetric, but not symmetric. Clearly every symmetric function is qua-
sisymmetric. Quasisymmetric functions were introduced by Gessel [9] in his work
on Stanley’s theory of P -partitions. They have since found many applications in
both enumerative and algebraic combinatorics. We denote by QSymn the vector
space of quasisymmetric functions homogeneous of degree n. Bases for this vector
space are indexed by compositions of n, which are sequences of positive integers
α = (α1, . . . , αk) summing to n. We will use the notations α |= n and |α| = n for
compositions of n. Greek letters near the beginning of the alphabet will be used for
compositions while those near the middle will represent partitions. There is also an
important bijection between compositions of n and subsets S ⊆ [n− 1] given by

(α1, α2, α3, . . . , αk) 7→ {α1, α1 + α2, α1 + α2 + α3, . . . , α1 + α2 + · · ·+ αk−1}.

We will sometimes go back and forth between a composition and its associated set
without mention.

Algebraic Combinatorics, Vol. 3 #2 (2020) 366



Pattern avoidance and quasisymmetric functions

The basis we will be using for QSymn was considered in Gessel’s original paper.
Given S ⊆ [n− 1], the associated fundamental quasisymmetric function is

FS =
∑

xi1xi2 . . . xin

where the sum is over all indices such that i1 6 i2 6 · · · 6 in and is < is+1 if s ∈ S.
For example, if S = {1} ⊆ [2] then the sum would be over all xixjxk with i < j 6 k,
which gives

F{1} = x1x
2
2 + x1x

2
3 + x2x

2
3 + · · ·+ x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 + · · ·

in QSym3. Since sλ is symmetric, and hence quasisymmetric, it can be expanded in
the FS basis. To do so, we need the descent set of an SYT, P , which is

DesP = {i | i+ 1 is in a lower row than i in P}.

For example, if

P =
1 2 5 9
3 4 7
6 8

then DesP = {2, 5, 7}. Note that if P has shape λ ` n then DesP ⊆ [n− 1].

Theorem 1.1 ([9]).We have

sλ =
∑

P∈SYT(λ)

FDesP .

Returning to λ = (2, 1), the two elements of SYT(2, 1) are the fifth and sixth
displayed tableaux in (1) with descent sets {2} and {1} respectively. Therefore s(2.1) =
F{1} + F{2}.

To combine permutation patterns and quasisymmetric functions, recall that the
descent set of a permutation π = π1 . . . πn is

Desπ = {i | πi > πi+1} ⊆ [n− 1].

For example, Des(35716824) = {3, 6}. Now given a set of patterns Π we define the
pattern quasisymmetric function

Qn(Π) =
∑

σ∈Sn(Π)

FDesσ.

The basic questions we wish to ask about these functions are
(1) When is Qn(Π) symmetric for all n?
(2) In that case, when is Qn(Π) Schur nonnegative for all n?

Note that we are asking about symmetry or Schur nonnegativity not for a single
function, but rather for an infinite family of functions.

We start with Π ⊆ S3 and will prove the following theorem for which we will
need some preliminaries. If {123, 321} ⊆ Π then, by the Erdős–Szekeres Theorem [8],
Sn(Π) = ∅ for n > 5, which explains the hypothesis on Π. We use the notation fλ
for the number of SYT of shape λ. The transpose of λ is the diagram λt obtained by
reflecting λ in the main diagonal. Then λt1 is the number of boxes in the first column
of λ, which is also written as `(λ) and called the length of λ. Also, a hook is a partition
of the form (a, 1b) for nonnegative integers a, b where 1b denotes the part 1 repeated
b times. When using a partition as a subscript we often omit the parentheses.
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Π Qn(Π) for n > 3

∅
∑
λ

fλsλ

{123}
∑
λ1<3

fλsλ

{321}
∑
λt1<3

fλsλ

{132, 213}; {132, 312}; {213, 231}; {231, 312}
∑

λ a hook
sλ

{123, 132, 312}; {123, 213, 231}; {123, 231, 312} s1n + s2,1n−2

{132, 213, 321}; {132, 312, 321}; {213, 231, 321} sn + sn−1,1

{132, 213, 231, 312} sn + s1n

{123, 132, 213, 231, 312} s1n

{132, 213, 231, 312, 321} sn

Table 1. The Π for Theorem 1.2 along with the Schur expansions
of Qn(Π) where λ ` n

Theorem 1.2. Suppose {123, 321} 6⊆ Π ⊆ S3. The following are equivalent
(1) Qn(Π) is symmetric for all n.
(2) Qn(Π) is Schur nonnegative for all n.
(3) Π is an entry in Table 1.

We note that it is easy to compute examples to show that for any Π not listed
in Table 1 we have Qn(Π) not being symmetric for some small value of n depending
on Π. Therefore it suffices to show that the Π in the table have the claimed Schur
expansions. In fact, we will show that these expansions are special cases of more
general results or conjectures where Π is not restricted to S3.

The rest of this paper is structured as follows. In the next section we discuss
what effect reversal and complementation have on Qn(Π) as well as using properties
of the Robinson–Schensted correspondence to derive some of the results in Table 1.
In Section 3 we show how the quasisymmetric function for a shuffle of two pattern
sets can be computed in terms of the ones for each individual component. Shuffles
with increasing and decreasing permutations as well as full symmetric groups are
used as examples. We define partial shuffles in Section 4 as certain shuffles where
the increasing permutation has been removed. We conjecture that in this case Qn(Π)
has a nice Schur expansion and prove this in a special case. Clearly if Sn(Π) is a
union of Knuth classes then Qn(Π) is symmetric and Schur nonnegative. In Section 5
we study when this can happen and, in particular, characterize the SYT such that
the permutations avoiding its Knuth class have this property. We show in Section 6
that avoiders of the arc permutations of Elizalde and Roichman [4, 5] are in bijection
with the permutations avoiding a certain set of shuffles. We end with a section of
comments and open questions. We should note that several of our results were derived
independently by Elizalde and Roichman [7] in the context of products and grid
classes. For these, we provide a citation of their work in the corresponding proposition
of this article. In this paper, they also find Qn(Π) for various sets of patterns not
consideered here, for example when Π = {321, 2143, 2413}.
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2. Symmetries and the Robinson–Schensted bijection
If one views a permutation as a permutation matrix, then the dihedral group D4 of
the square acts on Sn. We wish to investigate whether this action tells us anything
about Qn(Π). In particular, if this function is symmetric and one acts on Π with a
dihedral symmetry then is the new quasisymmetric function symmetric? If so, what
is its Schur expansion? As usual, we apply a symmetry to a set by applying it to each
member of the set.

First we note that if Qn(Π) is a symmetric function then Qn(Π−1) need not be.
For example, one can easily check that this is true if n = 3 and Π = {132, 312}.
Therefore we can expect the dihedral symmetries preserving symmetry of Qn to form
a subgroup of order at most 4 in D4. We will now show that such a subgroup exists.

It is easy to describe two of the symmetries in D4 directly in terms of the per-
mutations in Sn. The permutation π = π1π2 . . . πn has complement πc = n + 1 −
π1, n+ 1− π2, . . . , n+ 1− πn where we have inserted commas between the elements
for readability. Its reversal is πr = πnπn−1 . . . π1. For example, if π = 35716824 then
πc = 64283175 and πr = 42861753. Complementation and reversal are two of the
reflections in D4 and so πrc = πcr is the permutation whose matrix is obtained by
rotating the matrix of π by 180◦. To state our first dihedral symmetry result, recall
that the transpose λt of a Young diagram λ is gotten by reflecting λ in its main
diagonal. We use the same notation for tableaux.

Proposition 2.1. If Qn(Π) is symmetric then so is Qn(Πc). In particular, if Qn(Π) =∑
λ cλsλ for certain coefficients cλ then

Qn(Πc) =
∑
λ

cλsλt .

Proof. Using Theorem 1.1 we can write∑
σ∈Sn(Π)

FDesσ = Qn(Π) =
∑
λ

cλsλ =
∑
λ

cλ
∑

P∈SYT(λ)

FDesP .

Note that for any permutation Desπc = [n − 1] − Desπ and Sn(Πc) = (Sn(Π))c.
Also, for any standard Young tableau DesP t = [n−1]−DesP . Using these facts and
the previous displayed equation gives

Qn(Πc) =
∑

σ∈Sn(Π)

F[n−1]−Desσ =
∑
λ

cλ
∑

P∈SYT(λ)

F[n−1]−DesP =
∑
λ

cλsλt

as desired. �

In order to deal with reversals, we will need some background about the Robinson–
Schensted map [12, 14]. This is a bijection

RS : Sn →
⋃
λ`n

SYT(λ)× SYT(λ).

If RS(π) = (P,Q) then we will write P = P (π) and Q = Q(π) and call P and Q
the P -tableau and Q-tableau of π, respectively. If π = π1 . . . πn then P is constructed
using an operation called insertion that sequentially inserts π1, . . . , πn to form P .
After the kth insertion, a k is placed in Q so that one maintains shP = shQ at
all times. Although we are using Q in both the notation Q(π) and Qn(Π) the two
different concepts should be distinguishable by context and the fact that the latter
has a subscript while the former does not.

We put an equivalence relation on Sn by declaring that π and σ are Knuth equiva-
lent, written π ∼ σ, if P (π) = P (σ). Given an SYT P , the correspondingKnuth class is

K(P ) = {π | P (π) = P}.
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Given a partition λ it will also be convenient to define an associated Knuth aggre-
gate by

K(λ) = {π | shP (π) = λ} =
⋃

sh(P )=λ
K(P ).

We will need the following properties of the map RS. For proofs of these results,
see [16].

Theorem 2.2. Suppose RS(π) = (P,Q).
(1) Desπ = DesQ.
(2) If shP = λ then λ1 is the length of a longest increasing subsequence of π.
(3) P (πr) = (P (π))t.
(4) RS(π−1) = (Q,P ).

These results have interesting implications for our quasisymmetric functions. To
state them conveniently we will use the notation Fπ = FDesπ for a permutation π.
And for a set Π of permutations we define FΠ =

∑
π∈Π Fπ.

Lemma 2.3. Suppose P ∈ SYT(λ).
(1) FK(P ) = sλ.
(2) FK(λ) = fλsλ.

Proof. Using the fact that RS is a bijection, Theorem 1.1, and Theorem 2.2 (1) we
have

FK(P ) =
∑

π∈K(P )

FDesπ =
∑

Q∈SYT(λ)

FDesQ = sλ

which is (1). For (2), we use (1) to write

FK(λ) =
∑

sh(P )=λ

FK(P ) =
∑

sh(P )=λ

sλ = fλsλ

as desired. �

We will now prove that Proposition 2.1 continues to hold if complement is replaced
by reversal.

Proposition 2.4. If Qn(Π) is symmetric then so is Qn(Πr). In particular, if Qn(Π) =∑
λ cλsλ for certain coefficients cλ then

Qn(Πr) =
∑
λ

cλsλt .

Proof. For each partition λ pick a tableau Pλ ∈ SYT(λ). Then using Lemma 2.3 (1)
we have ∑

σ∈Sn(Π)

FDesσ = Qn(Π) =
∑
λ

cλsλ =
∑
λ

cλFK(Pλ).

Combining this with Theorem 2.2 (3) yields

Qn(Πr) =
∑

σ∈Sn(Π)

FDesσr =
∑
λ

cλFK((Pλ)t) =
∑
λ

cλsλt

which is what we wished to prove. �

As an immediate corollary of Propositions 2.1 and 2.4 we get the following.

Proposition 2.5 (cf. [7, Lemma 8.1]). If Qn(Π) is symmetric then so is Qn(Πcr). In
particular, Qn(Πcr) = Qn(Π).
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As an application of these ideas, we will now verify the expansions in the first three
and last three rows of Table 1. For the first row, we use Lemma 2.3 (2) and the fact
that RS is a bijection to write

Qn(∅) =
∑
σ∈Sn

Fσ =
∑
λ`n

FK(λ) =
∑
λ`n

fλsλ.

The next two rows are special cases of the following result. In it and the sequel we
eliminate the braces when writing out Qn(Π) for a specific Π. We will also use the
notation

ιk = 12 . . . k

and
δk = k . . . 21

for the increasing and decreasing permutations of length k.

Proposition 2.6. For any k > 1 we have

Qn(ιk) =
∑
λ1<k

fλsλ

and
Qn(δk) =

∑
λt1<k

fλsλ.

Proof. By either Proposition 2.1 or Proposition 2.4, it suffices to prove the first state-
ment. Note that σ ∈ Sn(ιk) if and only if the longest increasing subsequence of σ has
length less than k. Now using Theorem 2.2 (2), Lemma 2.3 (2) and the bijectivity of
RS we obtain

Qn(ιk) =
∑

σ∈Sn(ιk)

Fσ =
∑
λ1<k

FK(λ) =
∑
λ1<k

fλsλ

which is the desired result. �

As far as the last three rows of Table 1, the reader will find it easy to prove the
following result so the proof is omitted.

Proposition 2.7. For Π = Sk − {ιk, δk} we have

Qn(Π) =


∑
λ`n

fλsλ for n < k,

sn + s1n for n > k.

For Π = Sk − {δk} we have

Qn(Π) =


∑
λ`n

fλsλ for n < k,

s1n for n > k.

For Π = Sk − {ιk} we have

Qn(Π) =


∑
λ`n

fλsλ for n < k,

sn for n > k.
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3. Shuffles
In this section we will show that several of the entries in Table 1 can be explained using
shuffles of permutations. It turns out that under very general conditions, shuffling
preserves Qn being symmetric, and perhaps Schur nonnegative as well.

If π = π1 . . . πm and σ = σ1 . . . σn are sequences on distinct elements on disjoint
alphabets then their shuffle set is

π� σ = {τ = τ1 . . . τm+n | π and σ are subsequences of τ}.
For example

13� 42 = {1342, 1432, 1423, 4132, 4123, 4213}.
If π ∈ Sm and σ ∈ Sn then we define π � σ = π � (σ + m) where σ + m is the
sequence obtained by adding m to each element of σ. To illustrate

12� 21 = 12� 43 = {1243, 1423, 1432, 4123, 4132, 4312}.
We shuffle sets of permutations as expected, namely

Π�Π′ =
⋃

π∈Π,π′∈Π′
π� π′.

To prove the next result, it will be useful to have a notation for the permutations
in Sn that contain a pattern in Π, which will be

Sn(Π) = Sn −Sn(Π).
We will also use s1 as shorthand for the Schur function s(1).

Theorem 3.1. For any sets of nonempty permutations Π and Π′ and any n > 0,

Qn(Π�Π′) = Qn(Π′) +
n−1∑
k=0

Qk(Π)[s1Qn−k−1(Π′)−Qn−k(Π′)].

Proof. We first show that

(2) Sn(Π�Π′) =
n−1⋃
k=1

Sk(Π)�Sn−k(Π′).

If τ ∈ Sn(Π � Π′) then τ contains π � π′ for some π ∈ Π and π′ ∈ Π′. Let τa
and τ b be the copies of π and π′, respectively, in τ . This implies max τa < min τ b.
Then the restriction of τ to the elements of [k] where k = max τa is an element
of Sk(Π), similarly restricting to [n] − [k] gives an element of Sn−k(Π′) + k. Thus
τ ∈ Sk(Π)�Sn−k(Π′). The reverse inclusion is proven similarly.

The Malvenuto–Reutenauer algebra [11], MR, is the set of formal Q-linear combi-
nations of permutations with product given by shuffle. The map Φ : MR → QSym
given by π 7→ Fπ is a homomorphism. Define Ak = Sk(Π)�Sn−k(Π′). Applying Φ
to both sides of the summation identity implied by (2) and then using the Principle
of Inclusion-Exclusion gives

(3) Φ(Sn(Π�Π′)) =
n−1∑
p=1

(−1)p−1
∑

16k1<···<kp6n−1
Φ(Ak1 ∩ · · · ∩Akp).

A proof similar to the one for (2) shows that if k < ` then
(4) Ak ∩A` = Sk(Π)�S`−k �Sn−`(Π′).
Indeed, if σ ∈ Ak ∩ A` then, since σ ∈ Ak, the smallest k elements of σ contain a
copy of π ∈ Π. Since ` > k it is automatic that the smallest ` elements of σ contain
the same copy of π. Similarly we have that the last n− ` elements of σ must contain
a copy of some element of Π′. And it is easy to check that the other elements can be
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arranged arbitrarily so that σ ∈ Sk(Π)�S`−k �Sn−`(Π′). The reader should now
be able to fill in the details of the reverse containment.

From (4) it follows that if k1 < · · · < kp, then Ak1∩· · ·∩Akp = Ak1∩Akp . Applying
this observation to (3) and then using the fact that

∑
k(−1)k

(
n
k

)
= δn,0 gives

Φ(Sn(Π�Π′)) =
n−1∑
k=1

Φ(Ak) +
∑

16k<`6n−1
Φ(Ak ∩A`)

n−1∑
p=2

(−1)p−1
(
`− k − 1
p− 2

)

=
n−1∑
k=1

Φ(Ak)−
n−2∑
k=1

Φ(Ak ∩Ak+1).

Now using the definition of Ak, equation (4), and the fact that Φ is a homomorphism
yields

Φ(Sn(Π�Π′)) =
n−1∑
k=1

Φ(Sk(Π)�Sn−k(Π′))−
n−2∑
k=1

Φ(Sk(Π)�S1 �Sn−k−1(Π′))

=
n−1∑
k=1

Φ(Sk(Π))Φ(Sn−k(Π′))−
n−2∑
k=1

Φ(Sk(Π))s1Φ(Sn−k−1(Π′)).

Write Φ(Sn(Π)) = Φ(Sn) − Qn(Π) = sn1 − Qn(Π) and expand the binomials. All
terms will cancel except the products involving at most one factor of s1 from the first
sum and Qk(Π)s1Qn−k−1(Π′) from the second. Rearranging terms gives the formula
in the theorem once one takes account of the fact that the initial Qn(Π′) summand
cancels into the k = 0 term of the sum. �

We note that this theorem takes a nice form when expressed in terms of generating
functions. In particular, if one lets

Q(Π) =
∞∑
n=0

Qn(Π)tn

then the previous result becomes the following.

Corollary 3.2. For any sets of permutations Π and Π′,

Q(Π�Π′) = Q(Π) +Q(Π′) + (ts1 − 1)Q(Π)Q(Π′).

We also have the following immediate corollary of Theorem 3.1

Corollary 3.3. For any sets of nonempty permutations Π and Π′, if Qn(Π) and
Qn(Π′) are symmetric for all n then then same is true of Qn(Π�Π′).

Unfortunately, the theorem does not show that Schur nonnegativity is preserved.
However computer evidence supports this conjecture.

Conjecture 3.4. For any sets of nonempty permutations Π and Π′, if Qn(Π) and
Qn(Π′) are Schur nonnegative for all n then then same is true of Qn(Π�Π′).

Although we can not do so in general, we can still derive Schur nonnegativity under
certain circumstances.

Lemma 3.5. Suppose that, for all n > 0

Gn =
∑
λ`n

cλsλ
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for certain constants cλ. Define, for all n > 1, a symmetric function G′n and constants
dλ by

G′n = s1Gn−1 −Gn =
∑
λ`n

dλsλ.

(1) We have

dλ =
(∑
λ−

cλ−

)
− cλ

where λ− ranges over all diagrams obtained by removing a box from the dia-
gram of λ

(2) If cλ 6
∑
λ− cλ− for all λ ` n then G′n is Schur-nonnegative.

Proof. Clearly (2) follows from (1). And (1) itself follows easily from the Pieri rule
for multiplying Schur functions. �

As an application, we will consider shuffles with ιk, δk, and Sk.

Corollary 3.6. If Qn(Π) is Schur-nonnegative for all n > 0 then so are the follow-
ing: Qn(Π� ιk), Qn(Π� δk), and Qn(Π�Sk).

Proof. We will only prove first statement as the others are similar. Recall that the
Littlewood–Richardson rule expresses the product of two Schur functions as a non-
negative linear combination of Schur functions. Then in view of Theorem 3.1, it suffices
to show that condition (2) of Lemma 3.5 is satisfied where Gn = Qn(ιk). By Propo-
sition 2.6, if λ1 > k then cλ = 0 and so the inequality is immediate. On the other
hand, if λ1 < k then the same is true of all λ−. In this case

cλ = fλ =
∑
λ−

fλ
−

=
∑
λ−

cλ−

and we are done. �

Now we can verify another four entries in Table 1.

Theorem 3.7. For n > 2 we have
Qn(123, 132, 312) = Qn(123, 213, 231) = s1n + s2,1n−2

and
Qn(132, 312, 321) = Qn(213, 231, 321) = sn + sn−1,1.

Proof. By Propositions 2.1 and 2.4, we only need to prove the statement for one of
the four sets of permutations. Consider {123, 132, 312} = {12}� {1} and note that
Qk(1) = δk,0 where we are using the Kronecker delta. Then for any Π, Theorem 3.1
gives Qn(Π� 1) = s1Qn−1(Π). In particular, using Proposition 2.6 and the Pieri rule

Qn(12� 1) = s1Qn−1(12) = s1s1n−1 = s1n + s2,1n−2

as desired. �

4. Partial shuffles
We now wish to study and generalize Qn(132, 213) (and, by symmetry, Qn(231, 312)).
We will do this using a new concept that we call a partial shuffle. First, however, we
will derive the quasisymmetric function for {132, 213} itself.

There is a well-known characterization of the permutations inSn(132, 213) as those
which are reverse layered; see, for example, the paper of Simion and Schmidt [15]. A
permutation in Sn is reverse layered if it is of the form
(5) π = a, a+ 1, . . . , n, b, b+ 1, . . . , a− 1, c, c+ 1, . . . , b− 1, . . .
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For certain a > b > c > · · · > 0. We are using the term “reverse” because in this case
πr is what is usually called a layered permutation. Also, let

Hn = {λ ` n | λ is a hook}
and SYT(Hn) be the set of tableaux P so that sh(P ) ∈ Hn.

Proposition 4.1 ([7, Corollary 4.11]).We have

Qn(132, 213) = Qn(231, 312) =
∑
λ∈Hn

sλ

Proof. By symmetry, it suffices to prove that Qn(132, 213) is equal to the sum. From
the description (5) it is clear that the map π 7→ Desπ gives a bijection Sn(132, 213)→
2[n−1]. Thus

Qn(132, 213) =
∑

S⊆[n−1]

FS .

We will be done by Lemma 2.3 (1) if we can show that the map P 7→ DesP is a
bijection SYT(Hn) → 2[n−1]. But is is easy to see that this map has an inverse. In
particular, given S ⊆ [n − 1] we construct the hook tableau whose first column has
elements {1} ∪ (S + 1) where S + 1 ⊂ [n] is obtained by adding one to each element
of S. �

To try and generalize the previous result, note that {132, 213} = (13� 2)−{123}.
We will put a hat on an element of a permutation to indicate the sequence obtained
by removing that element. For example, 32̂41 = 341. Now define the partial shuffle

(12 . . . n̂− 1n)� (n− 1) = [(12 . . . n̂− 1n)� (n− 1)]− {ιn}.
To illustrate 13� 2 = {132, 213} and 124� 3 = {1243, 1324, 3124}.

For the generalization of hook diagrams, let (i, j) denote the box of a Young dia-
gram in row i and column j. And if P is a Young tableau then Pi,j will be the entry
of P in box (i, j). We will consider the set of of enlarged hooks

Hn,j = {λ ` n | (2, j) 6∈ λ}.
Note Hn,2 = Hn. The following conjecture has Proposition 4.1 as the special case
j = 3.

Conjecture 4.2. For j > 3 we have

Qn((12 . . . ĵ − 1j)� (j − 1)) =
∑

λ∈Hn,j−1

fλsλ

where λ is λ with λ1 replaced by min{λ1, j − 2}.

This conjecture has recently been proved by Bloom and Sagan [2]. Here we content
ourselves with making some progress on the case j = 4. It follows from Theorem 2.2 (2)
and (3) that if π avoids δm then P (π) has less than m rows. In general it is not true
that if Qn(Π) =

∑
λ cλsλ then we have Qn(Π∪{δm}) is the same sum restricted to λ

with `(λ) < m. As an example from Theorem 1.2, Qn(231, 312) is Schur non-negative
but Qn(231, 312, 321) is not even symmetric for all n. However, this property seems
to be enjoyed in the context of partial shuffles.

Conjecture 4.3. For j > 3 let Π = (12 . . . ĵ − 1j)� (j− 1). Now for m > 2 we have

Qn(Π ∪ {δm}) =
∑
λ

fλsλ

where the sum is over all λ ∈ Hn,j−1 such that `(λ) < m, and λ is λ with λ1 replaced
by min{λ1, j − 2}.
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Note that Conjecture 4.3 implies Conjecture 4.2 by letting m→∞. We can give a
proof of the case j = 3 of Conjecture 4.3. In fact, a slight modification of the proof of
Proposition 4.1 will work since the bijections used there can be restricted to layered
permutations with fewer than m layers and hook tableaux with fewer than m rows,
both mapping onto the subsets of [n − 1] with fewer than m elements. This proves
the following.

Proposition 4.4 ([7, Corollary 4.11]). For m > 2 we have

Qn(132, 213, δm) =
∑
λ

sλ

where the sum is over all λ ∈ Hn such that `(λ) < m. In particular

Qn(132, 213, 321) = sn + sn−1,1

and by symmetry
Qn(123, 231, 312) = s1n + s2,1n−2 .

We will now prove Conjecture 4.3 in the special case j = m = 4, that is, we will
consider

(6) Π = {1243, 1324, 3124, 4321}.

Given σ ∈ Sn we will write its descent set in increasing order Desσ = {d1 < d2 <
· · · < d`}. We also let d0 = 0 and d`+1 = n when convenient. Let α(σ) denote the
corresponding descent composition so that αi = di − di−1 for 1 6 i 6 ` + 1. The
increasing run of σ corresponding to αi is the factor of σ consisting of the elements
with indices between di−1 + 1 and di inclusive. For example, if σ = 561342 then
Desσ = {2, 5}, α(σ) = (2, 3, 1) and the increasing runs of σ are 56, 134, and 2. We
will need the following description of the increasing runs of a σ avoiding 1243 and 3124.
It is analagous to the reverse layered description of the permutations σ which avoid
{132, 213}, which is equivalent to the increasing runs of σ being consecutive integers.

Lemma 4.5. If σ avoids 1243 and 3124 then every increasing run of σ of length at
least two has the form

a, b, b+ 1, b+ 2, . . . , b+ k

for some a < b and some k > 0.

Proof. The result is trivial if the the length of the run is two, so assume it has length
at least three. Let d be the maximum (and hence, last) element of the run. Suppose,
towards a contradiction, that not every integer in the interval [b, d] appears in this
run. In particular, suppose that there is c with b < c < d that is not in the run.
Now either c comes before the run so that σ contains the subsequence cabd, or after
the run so that σ contains the subsequence abdc. This gives a contradiction in that σ
contains either a copy of 3124 or 1243. �

We now define two maps that in certain cases, because of the lemma, will be
inverses. The contraction at index j of σ ∈ Sn is the permutation cj(σ) ∈ Sn−1
obtained by removing σj and then standardizing what remains. The expansion at
index j is the permutation ej(σ) ∈ Sn+1 obtained by increasing all the elements of
σ greater than σj by one and then inserting σj + 1 directly after σj in the result.
Continuing our example above with σ = 561342, we have c5(561342) = 45132 and
also e4(45132) = 561342 = σ. To state the next result it will be convenient to have
the notation.

A(α, n) = {σ ∈ Sn(1243, 1324, 3124, 4321) | α(σ) = α}.
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Proposition 4.6. Let α |= n have a part αi > 3 and let j = α1 + α2 + · · · + αi.
Also let α′ |= n − 1 be the composition obtained from α by replacing αi by αi − 1.
Then contraction and expansion restrict to maps cj : A(α, n) → A(α′, n − 1) and
ej−1 : A(α′, n− 1)→ A(α, n) that are inverses of each other.

Proof. We first show that cj is well defined. Suppose σ ∈ A(α, n). Since αi > 3 we
have, by Lemma 4.5, that σj = σj−1+1. It follows that removing σj and standardizing
will produce a descent at position j − 1. And since cj(σ) comes from standardizing
a subpermutation of σ, it must still avoid the permutations in question. Therefore
cj(σ) ∈ A(α′, n− 1) as desired.

The fact that ej−1(τ) = σ has the correct descent composition is similar to what
was done for cj(σ). To show that σ still avoids the four patterns, assume to the
contrary that it contains a copy κ of one of them. Then κ must contain both σj−1
and σj = σj−1+1 because, if not, then κ is also in τ (possibly obtained by replacing σj
by τj−1). Since σj = σj−1 +1 these two elements of κ must correspond to consecutive,
increasing elements in the pattern, so the only option is that they become the one
and two in either 1243 or 3124. But αi > 3 so that σj−1 is not the first element of its
run. Then replacing σj−1σj by τj−2τj−1 gives a copy of the forbidden pattern in τ , a
contradiction.

We now show that the two maps are inverses. For any permutation τ we have
cjej−1(τ) = τ . On the other hand, if σ ∈ A(α, n) then, again using the fact that
σj = σj−1 + 1, we must have ej−1cj(σ) = σ because the element deleted by cj equals
the element inserted by ej−1. �

As for partitions, the number of parts of a composition α will be written `(α) and
called the length of α.

Corollary 4.7. If σ ∈ Sn(1243, 1324, 3124, 4321) then `(α(σ)) 6 5.

Proof. Suppose, to the contrary, that `(α(σ)) > 6. Removing all but the first 6 in-
creasing runs of σ and standardizing we can assume `(α(σ)) = 6. Now applying
the bijections cj from the previous proposition for various values of j, we obtain a
τ ∈ Sm(1243, 1324, 3124, 4321) that has no increasing run of length greater than 2.
It follows that m 6 12. But we have verified by computer that no such τ exists. �

We now have all the tools in place to compute Qn(Π) where Π is given by (6) and
just need one more definition. For compositions we will use the partial order α 6 β
if `(α) = `(β) and αi 6 βi for all i. Note that we consider compositions of different
lengths to be incomparable.

Theorem 4.8. Let Π = {1243, 1324, 3124, 4321}. Then

(7) Qn(Π) =
∑
λ

fλsλ

where the sum is over all λ ∈ Hn,3 with `(λ) 6 3, and λ is λ with λ1 replaced by
min{λ1, 2}. In particular, for n > 6 we have
(8) Qn(Π) = sn + 2sn−1,1 + 2sn−2,2 + 3sn−2,1,1 + 5sn−3,2,1 + 5sn−4,2,2.

Proof. The “in particular” follows from equation (7) and the fact that when n > 6
we always have λ1 replaced by 2 in λ.

We will prove (7) by induction on n, where we have verified it by computer for
n 6 10. Consider any nonempty set A(α, n) for n > 11. By Corollary 4.7, the fact
that this set is nonempty forces there to be a part αi > 3. Applying the contraction
bijections from Proposition 4.6, we see that there is a β |= 10 such that #A(β, 10) =
#A(α, n).
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Now consider the sum on the right-hand side of (7), which, since n > 11, reduces
to (8). Using Theorem 1.1, we see that we want to show that Qn(Π) equals

Fn + 2

 ∑
α>(1,1)

Fα +
∑

α>(2,2)

Fα +
∑

α>(1,2,1)

Fα

+ 3
∑

α>(1,1,1)

Fα

+ 5

 ∑
α>(2,2,1)

Fα +
∑

α>(2,2)

F1α +
∑

α>(2,1,2)

Fα +
∑

α>(1,2,1,1)

Fα +
∑

α>(1,1,2,1)

Fα

+
∑

α>(2,2,2)

Fα +
∑

α>(1,2,1,2)

Fα +
∑

α>(2,2,1)

F1α +
∑

α>(2,1,2,1)

Fα

+
∑

α>(2,2,2,1)

Fα +
∑

α>(1,2,1,2,1)

Fα +
∑

α>(1,1,2,1,1)

Fα


where 1α is the composition obtained by concatenating (1) and α, and all subscripts
of the F ’s are compositions of n. By way of illustration, to obtain sn−1,1 we consider
the n− 1 SYT of shape (n− 1, 1) and find that their descent sets have corresponding
compositions (1, n−1), (2, n−2), . . . , (n−1, 1). But these are exactly the α |= n with
α > (1, 1). So the associated quasisymmetric functions are those in the first sum of
the previous displayed equation. The other summations are explained similarly.

To finish the induction, it suffices to show that the sums of fundamentals to which
α contributes are the same as the ones to which β contributes where α and β are as
in the previous paragraph. But all of the lower bounds in the sums are compositions
with only ones and twos. And applying cj reduces a part of size at least three to a
part of size at least two and leaves all other parts the same. Therefore this map does
respect the expansion into fundamentals above and we are done. �

Note that (8) shows that the Schur expansion for this set of patterns stabilizes as
n→∞. We will have more to say about stability in the next and last sections.

5. Knuth classes
The final entries from Table 1 that need to be explained are {132, 312} and {213, 231}.
The reader will recognize these as Knuth classes K(P ) for P equal to

(9) 1 2
3

and

(10) 1 3
2

,

respectively. The main result of this section will be a characterization of the P for
which Sn(K(P )) is a union of Knuth classes for all n. For such P it is clear that
Qn(K(P )) will be Schur nonnegative. We will first deal with the special case when P
is one of the two tableaux above.

We will concentrate on {132, 312} since the other Π is just its reversal. It follows
easily from the inductive description of the σ ∈ Sn(132, 312) in [15] that they are
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exactly the permutations such that for all j > 2 we have

σj =
{

(mini<j{σi})− 1, or
(maxi<j{σi}) + 1.

Equivalently, for all j > 1 the set {σ1, σ2, . . . , σj} is an interval of integers.
Proposition 5.1 ([7, Lemma 4.5]). For n > 1 we have

Qn(132, 312) = Qn(213, 231) =
∑
λ∈Hn

sλ.

Proof. By reversal, it suffices to prove that Qn(132, 312) is equal to the sum. As
in the proof of Proposition 4.1, it suffices to show that Des restricts to a bijection
Sn(132, 312)→ 2[n−1]. But given J ⊆ [n− 1] there is a unique σ avoiding {132, 312}
with that descent set, which can be constructed as follows. Arrange the integers
1, 2, . . . ,#J in a decreasing sequence in the positions of J + 1 (the set obtained by
adding one to every element of J) of σ. Then arrange the integers #J+1,#J+2, . . . , n
as an increasing sequence in the remaining positions. It is easy to check that the
permutation thus constructed has Desσ = J . �

We now consider general Knuth classes K(P ). We first need to recall some general
facts about these sets. Suppose we have positive integers a < b < c and a permutation
σ having a factor (subsequence of consecutive elements) acb or cab. Then we can
perform a Knuth move on σ by exchanging one factor for the other. Alternatively,
a Knuth move can exchange factors of the form bac and bca. Two permutations are
Knuth equivalent if one can be transformed into the other by a sequence of Knuth
moves. For a proof of the next result, see [13].
Theorem 5.2. If P (σ) = P then K(P ) is the set of permutations Knuth equivalent
to σ.

Call Π pattern-Knuth closed if Sn(Π) is a union of Knuth classes for all n. Equiv-
alently, the complement Sn(Π) is a union of Knuth classes for all n. The following
lemma is easy to prove directly from the definitions so its demonstration is omitted.
Lemma 5.3. If Π is pattern-Knuth closed then so are Πc,Πr, and Πrc.

There is a sense in which this property is stable.
Lemma 5.4. The set Π is pattern-Knuth closed if and only if Sn(Π) is a union of
Knuth classes for n 6M + 1 where M is the maximum length of a permutation in Π.
Proof. The forward direction is obvious so we will prove the converse. It will be more
convenient to show that Sn(Π) is a union of Knuth classes for n > M + 1. Suppose
σ ∈ Sn(Π) contains a copy κ of some π ∈ Π. By Theorem 5.2, it suffices to show that
the result σ′ of performing a Knuth move on σ will still be in Sn(Π). We will do this
for a factor acb where a < b < c as the other possible Knuth moves can be handled
similarly. There are three cases.

If κ does not contain both a, c then κ is still a subsequence of σ′ and we are done.
If κ contains all three elements, then σ′ contains κ′, which is formed by replacing acb
by cab in κ. Since our hypothesis implies that Π is a union of Knuth classes, κ′ is a
copy of an element of Π and we are again finished. The final case is when a, c are in
κ but b is not. Let π′ be the standardization of the subsequence of σ containing κ
and b. Then π′ ∈ Sn(Π) for some n 6 M + 1. It follows from the hypothesis in this
direction that the permutation π′′ obtained by switching the elements corresponding
to a, c in π′ still contains an element of Π. Since σ′ contains a copy of π′′ this finishes
the proof. �
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We now show that being pattern-Knuth closed is preserved by shuffling.

Lemma 5.5 ([7, Theorem 2.5]). If A ⊆ Sm and B ⊆ Sn are unions of Knuth classes
then so is A�B.

Proof. We will show that if α ∈ A, β ∈ B and σ ∈ α � β contains the factor acb
where a < b < c, then replacing this factor by cab results in σ′ ∈ A� B. The proof
for the other Knuth moves is similar. There are three cases.

If a 6 m < c then α and β + m are still subwords of σ′ and so we are done. If
c 6 m then acb is a factor of α. But A is a union of Knuth classes so replacing this
factor by cab gives α′ ∈ A. Thus σ′ ∈ α′ � β ⊆ A� B. The only other possibility is
a > m in which case a similar argument to the one just given with A replaced by B
completes the proof. �

Combining this lemma and equation (2) we immediately see that Conjecture 3.4
is true in the case when Π and Π′ are pattern-Knuth closed. In fact, we only need to
assume that one of Π and Π′ is pattern-Knuth closed.

Proposition 5.6. If Π and Π′ are pattern-Knuth closed then so is Π�Π′. If Qn(Π)
is Schur nonnegative for all n and Π′ is pattern-Knuth closed, then Qn(Π � Π′) is
Schur nonnegative for all n.

Proof. The first sentence follows from Lemma 5.5 and equation (2). Under the hy-
potheses of the second sentence, Theorem 3.1 implies that Qn(Π�Π′) will be Schur
nonnegative for all n if the same is true of s1Qn−1(Π′) − Qn(Π′). Recalling the ho-
momorphism Φ : MR → QSym sending w 7→ Fw from the proof of Theorem 3.1, we
have

s1Qn−1(Π′)−Qn(Π′) = Φ
(∑
w∈A

w

)
where A = (Sn−1(Π′)�ι1)rSn(Π′). But A is a union of Knuth classes by Lemma 5.5
and the assumption that Π′ is pattern-Knuth closed. �

We need one more result before we prove the main theorem of this section. For
J ⊆ [n− 1] we let

DJ = {π ∈ Sn | Desπ = J}.
Suppose that RS(π) = (P,Q). Then, by Theorem 2.2 (1), we have π ∈ DJ if and
only if DesQ = J . As with other operations, we apply the inverse operator to a set
of permutations by applying it to each individual permutation. It now follows from
what we have just said and Theorem 2.2 (4) that π ∈ D−1

J if and only if DesP = J .
Then D−1

J is a union of Knuth classes. Also, it follows easily from the definitions that
Des(π−1) is the set of all i such that i + 1 appears to the left of i in π. These two
observations are important for the proof of the following result.

Lemma 5.7. For any J , the set D−1
J is pattern-Knuth closed.

Proof. The proof is very similar to that of Lemma 5.4. We only need to take some
care with the last case for which we use the same notation as in that demonstration.
Suppose first that the elements of π corresponding to a, c in κ are not consecutive in
value. From the discussion before the lemma, switching them will result in κ′ whose
standardization has the same inverse descent set as κ, namely J . Thus σ′ ∈ Sn(D−1

J ).
Now suppose that a and c standardize respectively to i and i+ 1 in π. It follows that
the other elements of κ are all less than a or greater than c. Now let κ′ be κ with
c replaced by b. Since a < b < c we have that κ′ also standardizes to π, and κ′ is a
subsequence of σ′, finishing this subcase. �
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To state our principal result, we need one last set of definitions. The row super-
standard Young tableau of shape λ is the SYT obtained by filling the first row with
1, 2 . . . , λ1; the next row with λ1 + 1, λ1 + 2, . . . , λ1 + λ2; and so on. Note that the
tableau in (9) is row superstandard. A column superstandard Young tableau is defined
similarly except that one fills the columns from left to right; see (10). A tableau of
either type is just called superstandard

Theorem 5.8. The class K(P ) is pattern-Knuth closed if and only if P is a super-
standard tableau of hook shape.

We will prove this in a sequence of propositions which deal with the various cases
involved. Note that because of Theorem 2.2 (3) and Lemma 5.3 we have K(P ) is
pattern-Knuth closed if and only if K(P t) is. Therefore we only need to prove closure,
or lack thereof, for one of P or P t. We also assume throughout that the shape of P
is λ ` n.

Proposition 5.9. If P is superstandard of hook shape then K(P ) is pattern-Knuth
closed.

Proof. Suppose λ = (n−k, 1k). By the remarks just before this proposition it suffices
to prove this when P is column superstandard. It is easy to see that in this case
K(P ) = D−1

J where J = [k]. The result then follows from Lemma 5.7. �

It will be convenient in our proofs to work with permutations and SYT having
elements that are rational numbers, not just integers. To this end, given an integer
a we let a+ = a + 1/2 and a− = a − 1/2. It will be important when comparing
such permutations and tableaux that we always standardize them to have entries
[n] for some n. We will also need the column reading word of an SYT P , which is
the permutation ρ(P ) obtained by recording the elements in each column of P read
bottom to top and then concatenating the sequences for the columns left to right. It
is easy to see that the insertion tableau of ρ(P ) is P .

Proposition 5.10. If P is of hook shape but not superstandard then K(P ) is not
pattern-Knuth closed.

Proof. Our strategy, as suggested by Lemma 5.4, will be to find an element σ ∈
Sn+1(K(P )) to which a Knuth move can be applied creating a permutation σ′ having
no subsequence κ with stdP (κ) = P . By transposition if necessary, we can assume
that n is in the first column of P . Since P is not superstandard, there is some a > 1
in its first column such that a + 1 is in the first row of P . Let a be the largest such
element. Let b > a + 1 be the next element in P ’s first column so that we have the
following situation

P =

1 · · · a+1 · · ·
...

a

b
...

n

with b+ 1 being in the first column if b < n.
Let σ be the permutation obtained by placing a+ just before b ∈ ρ(P ) so that

σ = n, . . . , a+, b, a, . . .
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which by construction is an element of Sn+1(K(P )). Now exchange a and b to obtain

σ′ = n, . . . , a+, a, b, . . .

Knuth equivalent to σ. Let κ be any subsequence of σ′ with |κ| = n and suppose k is
the element removed to form κ. If k = b then the first column of P (κ) contains a+,
which standardizes to a+ 1 so that stdP (κ) 6= P . If k 6= b then when b is inserted it
will enter the tableau in box (1, 2) since either a or a+ will be in box (1, 1) at that
point. When P (κ) is standardized, b will either stay the same or be replaced by b+ 1.
But both those elements need to be in the first column, so at some point b will be
bumped out of the first row. But then it will enter the second row in box (2, 2) because
at least two of 1, a, a+ are in κ so that the element in box (2, 1) when b is bumped
will be a or smaller. Then there will be a (2, 2) entry in P (κ) forcing its shape not to
be a hook, which completes our proof. �

Note that by performing transpositions, it suffices to prove Theorem 5.8 for
tableaux P satisfying P2,1 = 2.

Proposition 5.11. Let P be a standard tableau of non-hook shape with P2,1 = 2. If
there exists an i with Pi,1 > Pi−1,2 then K(P ) is not pattern-Knuth closed.

Proof. We will use the strategy and notation of the proof of the previous proposition.
We can write P in the following form

P =

1
2

c

d

R

S

.

It is easy to see that the insertion tableau of π = ρ(R), 2, d, 1, c, ρ(S) is P . We consider

σ = ρ(R), 2, d, 2+, 1, c, ρ(S),

which is Knuth equivalent to

σ′ = ρ(R), d, 2, 2+, 1, c, ρ(S).

Remove an element k from σ′ to form κ. There are two cases.
Suppose first that k 6∈ S1 ∪ {2, 2+, c} where S1 is the first row of tableau S. It

follows that 2, 2+, c, S1 is an increasing subsequence of κ of length λ1 + 1 where
shP = λ. Thus, by Theorem 2.2 (2), P (κ) has first row of length longer than λ1
and so is not of the correct shape. If k ∈ S1 ∪ {2, 2+, c} then k 6= 1, d. Let i be an
index with Pi,1 > Pi−1,2 and note that i > 3 so that Pi−1,2 > d. It follows that
P`(λ),1, . . . , Pi,1, Pi−1,2, . . . , P3,2, d, x, 1 is a decreasing subsequence of κ where x is
either 2 or 2+. But this subsequence has length `(λ)+1. If follows from Theorem 2.2 (2)
and (3) that P (κ) will have first column of length longer than `(λ) + 1 and so, again,
will not have the right shape. This finishes the proof. �

We can extend the definition of P by letting Pi,j =∞ for i, j > 1 and (i, j) outside
λ = shP . In this case, the proof of the previous proposition still goes through in the
case where P ’s first two columns are of equal length since P`(λ)+1,1 = ∞ > P`(λ),2.
We can now finish the proof of Theorem 5.8 with the following proposition.

Proposition 5.12. Let P be of non-hook shape. If Pi+1,1 < Pi,2 for all 1 6 i 6 t
where t is the length of P ’s second column, then K(P ) is not pattern-Knuth closed.
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Proof. We can write

P =
R

S

C

a

b0

c

e

where C is a single column. Note that by the discussion just before this proposition,
C must be nonempty. Let ρ(C) = fp . . . f1dl . . . d1bk . . . b1 where

a < b0 < b1 < · · · < bk < c < d1 < · · · < dl < e < f1 < · · · < fp.

Note that either k > 0 or l > 0 since C must contain an element less than e to satisfy
the hypothesis of this proposition. Our proof splits into two cases.

R1 R2 e

a c

b0 d1

b1
...

bk

c−

d2
...

dl

f1
...

fp

Figure 1. The insertion tableau for σ′ in Case 1.

Case 1. l > 0. Define
π = ρ(C), b0, e, a, c, ρ(R), ρ(S).

It easy to check that P (π) = P . Also let
σ = fp, . . . , f1, dl, . . . , d2, c

−, d1, bk, . . . , b0, e, a, c, ρ(R), ρ(S)
which is obtained from π by adding c−. Apply a Knuth move to obtain

σ′ = fp, . . . , f1, dl, . . . , d2, c
−, bk, d1, bk−1, . . . , b0, e, a, c, ρ(R), ρ(S)

Remove any h from σ′ to obtain κ. We will show P (κ) 6= P .
Consider the insertion tableau of σ up to and including ρ(R), which will have the

form given in Figure 1 where R1 and R2 are the two columns of R. If h comes from
the first column of this tableau then its removal will cause all the entries to shift up
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by one, making the first column too short. The only way to compensate for this is if
the insertion of ρ(S) causes e to bump into the first column in row r just below b0.
But then

P (κ)r,1 = e > d1 = P (κ)r−1,2

which is a contradiction. On the other hand, if h comes from the second column of
Figure 1 then e will have to end up in the second column to preserve column lengths.
And if h comes from a column of S then the first two columns in the figure must
remain undisturbed. In either case the first column will contain more entries in the
interval [b0, c] than P does, which finishes this case.

Case 2. l = 0 and k > 0. Now we consider
π = fp, . . . , f1, bk, e, bk−1, . . . , b0, a, c, ρ(R), ρ(S).

It is easily checked that since k > 0 we have P (π) = P . Add c+ to obtain
σ = fp, . . . , f1, c

+, bk, e, bk−1, . . . , b0, a, c, ρ(R), ρ(S)
and perform a Knuth move to yield

σ′ = fp, . . . , f1, c
+, e, bk, bk−1, . . . , b0, a, c, ρ(R), ρ(S).

Define h, κ, and R1 as before with the goal of showing P (κ) 6= P .
Note that there is a decreasing subsequence of σ′ of length `(λ)+1 consisting of the

f ’s, either c+ or e, the b’s, a, and ρ(R1). Therefore h ∈ {a, b0, . . . , bk, f1, . . . , fp}∪R1.
If h is one of the f ’s then P (κ) will have more elements in the interval [a, e] in its
first column than P . If h is any of the other possibilities, then P (κ) will have more
elements greater than c in its first column than P . Either way, we have our final
contradiction. �

We conclude this section with two questions. First of all, we know from Lemma 2.3
and Theorem 5.8 that when P is superstandard of hook shape then Qn(K(P )) is
Schur nonnegative.

Question 5.13. Find a combinatorial interpretation for the coefficients in the Schur
expansion for Qn(K(P )) when P is superstandard of hook shape.

It is also natrual to ask about generalizing Theorem 5.8 to pairs of tableaux.

Question 5.14. Let P,Q be standard Young tableaux. Find a necessary and sufficient
condition for K(P ) ∪K(Q) to be pattern-Knuth closed.

We note that if Π,Π′ are both pattern-Knuth closed then so is Π∪Π′ since in this
case Sn(Π∪Π′) is the union of the Knuth classes of Sn(Π) and Sn(Π′). This together
with Theorem 5.8 shows that if P,Q are superstandard hooks then K(P ) ∪K(Q) is
pattern-Knuth closed. We also note that both of these questions have been answered
by Bloom and Sagan [2]. In particular, they were able to deal with Question 5.14 by
giving a more conceptual proof of Theorem 5.8.

6. Arc permutations
Elizalde and Roichman introduced and studied arc permutations in [4, 5]. They are
closely related to two of the permutation classes we have been considering and so we
will be able to produce a bijection between the arc permutations and permutations
avoiding a certain shuffle.

A permutation σ ∈ Sn is in the set of arc permutations,An, if each prefix σ1σ2 . . . σi
is an interval in the integers modulo n. Equivalently, An = Sn(ΠA) where

ΠA = {1324, 1342, 2413, 2431, 3124, 3142, 4213, 4231}.
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Recall that the permutations avoiding {132, 312} were those where each prefix was
an interval of integers and a similar statement is true for suffixes when avoiding
{213, 231}. Define the pin shaped permutations to be

Pn = Sn(132, 312) ∪Sn(213, 231) ⊆ An.
(Elizalde and Roichman call these permutations unimodal because their rotations are
unimodal sequences, but we prefer to reserve unimodal for its original meaning.) We
will also be using the complement Zn = An − Pn.

In order to define the symmetric functions to describe Qn(ΠA) we will need a few
more definitions. Consider the set of non-trivial hooks

Hn = Hn − {(n), (1n)}
as well as the diagrams one obtains from the elements of Hn by adding the (2, 2) box

Tn = {λ ∪ (2, 2) | λ ∈ Hn−1}.
Define the corresponding generating functions Hn =

∑
λ∈Hn sλ and Tn =

∑
λ∈Tn sλ.

The following result is a consequence of [4, Theorem 7.7].

Theorem 6.1. For all n > 0 we have
Qn(ΠA) = Tn + 2Hn + sn + s1n .

There is a shuffle class with the same expansion. Let
ΠS = {1}� {132, 312} = {1243, 1423, 2143, 4123, 2413, 4213, 2431, 4231}.

Proposition 6.2. For all n > 0 we have
Qn(ΠS) = Qn(ΠA).

Proof. Applying Theorem 3.1 with Π = {1} and Π′ = {132, 312}, then Proposi-
tion 5.1, and finally the Pieri formula gives

Qn(ΠS) = Qn(Π′) + s1Qn−1(Π′)−Qn(Π′) = Tn + 2Hn + sn + s1n .

Comparing this with the previous result completes the proof. �

Note that by reversal, complement, and Proposition 4.1, the previous proposition
is true if ΠS is replaced by either {1}�Π or Π� {1} for any

Π ∈ { {132, 312}, {132, 213}, {213, 231}, {231, 312} }.
However, there is no dihedral symmetry relating any of these shuffles to ΠS .

Elizalde and Roichman [4, Section 7.4] gave a bijective proof of Theorem 6.1. In
particular, they proved the following result.

Theorem 6.3. For all n > 0, there is an explicit bijection
φ : Zn →

⋃
λ∈Tn

SYT(λ).

As a consequence, we have the following.

Corollary 6.4. For all n > 0, there is an explicit bijection
ψ : Sn(ΠA)→ Sn(ΠS).

Proof. Note that by their descriptions in terms of prefixes and suffixes, we have
Sn(132, 312) ∩Sn(213, 231) = {ιn, δn}.

For σ ∈ Sn(ΠA) we define ψ(σ) as follows, using Q(π) as the Robinson–Schensted
recording tableau.

(1) If σ ∈ Sn(132, 312) then let ψ(σ) = σ.
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(2) If σ ∈ Zn then let ψ(σ) = τ where τ ∈ Sn(ΠS) is the unique permutation
with Q(τ) = φ(σ).

(3) If σ ∈ Sn(213, 231) − {ιn, δn} then let ψ(σ) = τ where τ ∈ Sn(ΠS) −
Sn(132, 312) is the unique permutation with Q(τ) = Q(σ).

Note that (2) is well defined by Lemma 5.5 and the fact that Qn(Zn) is Schur mul-
tiplicity free. In a similar manner we see that (3) is well defined. The check that this
is a bijection is now easily done. �

The construction of the map ψ is hardly as illuminating as one would hope.

Question 6.5. Is there a direct description of a bijection between Sn(ΠA) and
Sn(ΠS) on the level of permutations?

7. Comments and open questions
We end with some comments and some questions that we hope the reader will be
interested in answering.

Symmetry vs. nonnegativity. It is possible to construct Π such that Qn(Π) is
symmetric, but not Schur nonnegative. In particular, consider the following set of
permutations where we have enclosed certain elements in parentheses for readability

Xn = {ιn} ∪ {2314 . . . n, 12 . . . (n− 3)n(n− 2)(n− 1)}
∪ {2134 . . . n, 1324 . . . n, . . . , 12 . . . (n− 2)n(n− 1)}
∪ {32145 . . . n, 14325 . . . n, . . . , 12 . . . (n− 3)n(n− 1)(n− 2)}.

Let Π = S4 −X4. Then one can verify that Sn(Π) = Xn and so

Qn(Π) = sn + 2sn−1,1 + sn−2,1,1 − sn−2,2.

Stability. The following is a natural question given the results we have proved such
as Lemma 5.4.

Question 7.1. Suppose Π is nonempty and M is the maximum length of a permuta-
tion in Π. Is there an N , a function of M , such that Qn(Π) symmetric for n < N
implies that it continues to be symmetric for n > N? What about the same question
with “symmetric” replaced by “Schur nonnegative”?

It is worth pointing out that the converse of these questions is false. In particular,
let λ = (3, 1, 1) and

P =

1 2 4

3

5

.

Then Bloom and Sagan [2] have shown that if Π = K(λ)−K(P ) then Qn(Π) is Schur
nonnegative for n > 7 but not even symmetric for n = 6.

Knuth classes. It would be interesting to determine when the union of Knuth
classes is pattern-Knuth closed, generalizing Theorem 5.8. Of course, if K and L are
pattern-Knuth closed then so isK∪L. In the case that one gets a pattern-Knuth closed
class Π, one would also like to characterize the coefficients in the Schur expansion of
Qn(Π). In [2] this has been done in the case where Π = K(P ) for a superstandard
hook tableau P .
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Representation theory. Adin and Roichman [1] have developed a way to connect
certain subsets of permutations with representations of Sn. Given α = (α1, . . . , αk) |=
n and π ∈ Sn the α-decomposition of π is the factorization π = π(1) . . . π(k) where
#π(i) = αi for all i. The α-descent set and α-descent number of π are

Desα π =
⋃
i

Desπ(i) and desα π = # Desα π,

respectively. An integer sequence a1 . . . ap is comodal (complement unimodal) if, for
some m, we have a1 > · · · > am < · · · < ap. (Note that Adin and Roichman call
such a sequence “unimodal” but that is at variance with standard practice.) Say that
π ∈ Sn is α-comodal if each π(i) in its α-decomposition is comodal. If Π is a set of
permutations then let Πα denote the set of α-comodal permutations in Π. Finally,
call Π ⊆ Sn fine if there is an Sn-character χ such that for all α |= n

χ(α) =
∑
π∈Πα

(−1)desα π

where χ(α) is the value of χ on the conjugacy class indexed by α.
Adin and Roichman give a number of conditions equivalent to a set of permutations

Π ⊆ Sn being fine, one of which is that Qn(Π) is symmetric and Schur nonnegative.
This approach has been continued in the work of Elizalde and Roichman [6].

Other bases. A couple of the generating functions we have calculated are Schur
P -functions. For example, if Π = {132, 312} then Qn(Π) = Pn by Proposition 5.1,
and Q(ΠA) = Pn−1,1 by Theorem 6.1.

Question 7.2. For which Π is Qn(Π) Schur P -nonnegative for all n?

One could also change the set of quasisymmetric functions being used in QSymn.
Let ΘPk be the peak fundamental quasisymmetric function associated with a subset
Pk ⊆ [2, n− 1]. Stembridge [17] developed a theory of enriched P -partitions (P here
is a partially ordered set), which allowed him to prove an analogue of Theorem 1.1
where sλ is replaced by a Schur P -function and the FDesP are replaced by ΘPk(σ)
for certain permutations σ, where Pk(σ) is the peak set of σ. Schur P -functions are
generating functions for certain shifted tableaux just as the usual Schur functions are
for semistandard left-justified Young tableaux. Then it is natural to define for a set
of permutations Π

Rn(Π) =
∑

σ∈Sn(Π)

ΘPk(σ)

and ask the question

Question 7.3. For which Π is Rn(Π) symmetric? In that case when is it Schur P -
nonnegative?
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